Pigmento: Pigment-Based Image Analysis and Editing

- Jianchao Tan George Mason University
- Stephen DiVerdi Adobe Research
- Adobe Research Jingwan Lu
- Yotam Gingold George Mason University

Background: Physical Painting

Background: Physical Painting

Cyan pigment ground truth data. 33 wavelength, from 380 to 700 nm, every 10 nm.

Thickness (t)

Substrate Reflectance (ξ)

Cyan pigment ground truth data. 33 wavelength, from 380 to 700 nm, every 10 nm.

Background: Kubelka-Munk Mixing Model

Multispectral KM Mixing

Linear RGB Mixing

Motivation

Painting re-editing

Primary pigments Mixing weights

Motivation

Decomposition

Input

Absorption

Painting re-editing

Related Work

- Digital palette based editing.
 - \bullet

Decomposing Images into Layers via RGB-space Geometry (Tan et al. 2016)

Chang et al. 2015; Tan et al. 2016; Lin et al. 2017; Zhang et al. 2017, Aksoy et al. 2017.

Related Work

- Kubelka-Munk model based editing.
 - Curtis et al. 1997; IMPaSTo (Baxter et al. 2004); Okumura et al. 2005; Zhao et al. 2008;

RealPigment (Lu et al. 2014); Abed et al. 2014; Tan et al. 2015; Aharoni-Mack et al. 2017

Pigment-Based Recoloring of Watercolor Paintings (Aharoni-Mack et al. 2017)

Problem Statement

- Image pixels' RGB colors: I. Input:

Problem Statement

- Image pixels' RGB colors: . Input:

$\mathbf{I} = \phi(km(\mathbf{WH}, t, \xi))$

Problem Statement

- Image pixels' RGB colors: . Input:

$\mathbf{I} = \phi(km(\mathbf{WH}, t, \xi = 1))$

Problem Statement

- Image pixels' RGB colors: . Input:

$I = \phi(km(WH, t = 1, \xi = 1))$

Problem Statement

- Image pixels' RGB colors: . Input:

$\mathbf{I} = \phi(km(\mathbf{WH}))$

Problem Statement

- Image pixels' RGB colors: . Input:

$\|\mathbf{I} - \phi(km(\mathbf{WH}))\|^2$

Problem Statement

- Image pixels' RGB colors: . Input:

$||\mathbf{I} - \phi(km(\mathbf{WH}))||^2$

It is under-constrained, and there are two additional challenges!

Problem Statement

Challenge 1: Metamerism

CS184/284A, Lecture 15 Ren Ng, Spring 2016

Absorption and Scattering curve of each primary pigment should be smooth.

Absorption and Scattering curve of each primary pigment should be smooth.

Absorption and Scattering's division curve should also be smooth.

Absorption and Scattering curve of each primary pigment should be smooth.

Absorption and Scattering's division curve should also be smooth. Useful for Metamerism problem!

Challenge 2: Solution Space

Gamut H for 4 color points

Gamut H1 by scaling H

Gamut H2 by rotating H

Gamut H for 4 color points

Gamut Q for more points

Challenge 2: Solution Space

Gamut H1 by scaling H

Gamut Q1 by scaling Q

Gamut H2 by rotating H

Gamut Q2 by rotating Q

Good Initial values

Good Initial values

Good Initial values

Directly solving this problem is hard.

Directly solving this problem is hard.

We divide it into two subproblems:

Directly solving this problem is hard.

We divide it into two subproblems:

1. Primary pigments extraction

Directly solving this problem is hard.

We divide it into two subproblems:

1. Primary pigments extraction

2. Mixing weights extraction

Representative pixels

$||\mathbf{I} - \phi(km(\mathbf{WH}))||^2$ + Pigment Smoothness

Fix H, solve W Fix W, solve H

Representative pixels

Convex hull vertices

$||\mathbf{I} - \phi(km(\mathbf{WH}))||^2$ + Pigment Smoothness

Given primary pigments, find per-pixel mixing weights.

Smoothness: Each primary pigment's mixing weights map is spatially smooth

Given primary pigments, find per-pixel mixing weights.

Original

rtrait2

Recovery

10x error

Our results

-Mixing Weights-

Compare to results from other models

Ours 4 pigments RMSE: 5.2

Tan et al. 2016 6 pigments **RMSE: 4.7**

Aksoy et al. 2017 7 layers RMSE: ~0

7

Recoloring comparison

Original

Original

blue pigment -> green (ours)

blue RGB -> green (Tan2016)

red pigment -> blue (ours)

red RGB -> blue (Tan2016)

Recoloring comparison

Ours

original

Tan et al. 2016

Chang et al. 2015

Applications

Recoloring by modifying pigment weights

Original

Reduce red

Original

Reduce yellow

Add more yellow

Add more red

Modify weights of black/white pigment

Original

Increase all weights

Increase the mixing weight of white pigment

Increase the mixing weight of black pigment

Decrease brightness

Increase brightness

Modify pigment scattering parameters

Original

Increase scattering

Decrease scattering

Mask Selection

Rectangle Input

Grabcut on KM layer

Grabcut on RGB

Copy-Paste in pigment space

Palette Summarization - Photos

Palette Summarization - Collections

on weights map

on RGB

Edge detection and enhancement

original

Enhancement

Conclusion

Conclusion

and their per-pixel mixing weights from given RGB painting image.

Provide an efficient optimization framework to extract multispectral pigments

Conclusion

- Provide an efficient optimization framework to extract multispectral pigments and their per-pixel mixing weights from given RGB painting image.
- Enable many paint-like edits of the painting, which are beyond RGB space.
Conclusion

- Provide an efficient optimization framework to extract multispectral pigments and their per-pixel mixing weights from given RGB painting image.
- Enable many paint-like edits of the painting, which are beyond RGB space.
- Our discussion of gamut problem and several regularization terms used in our optimization are useful in other similar problems.

• Using prior acyclic pigment database as initial value may cause overfitting problem.

- Using prior acyclic pigment database as initial value may cause overfitting problem.

• We do not have other datasets (e.g. watercolor pigment) to verify it.

- Using prior acyclic pigment database as initial value may cause overfitting problem.
 - We do not have other datasets (e.g. watercolor pigment) to verify it.
- We assume constant paint thickness to simplify optimization.

- Using prior acyclic pigment database as initial value may cause overfitting problem.
 - We do not have other datasets (e.g. watercolor pigment) to verify it.
- We assume constant paint thickness to simplify optimization.
- We may want to estimate pigment layers instead of just mixtures, then layer order is needed.

- Using prior acyclic pigment database as initial value may cause overfitting problem.
 - We do not have other datasets (e.g. watercolor pigment) to verify it.
- We assume constant paint thickness to simplify optimization.
- We may want to estimate pigment layers instead of just mixtures, then layer order is needed.
- Use our decomposition results to help extract brushstroke-level structure from painting images.

- Using prior acyclic pigment database as initial value may cause overfitting problem.
 - We do not have other datasets (e.g. watercolor pigment) to verify it.
- We assume constant paint thickness to simplify optimization.
- We may want to estimate pigment layers instead of just mixtures, then layer order is needed.
- Use our decomposition results to help extract brushstroke-level structure from painting images.

Thank You!

- Contact Information:
 - Jianchao Tan: <u>jtan8@gmu.edu</u>
 - Stephen DiVerdi: <u>diverdi@adobe.com</u>
 - Jingwan Lu: <u>jlu@adobe.com</u>
 - Yotam Gingold: <u>ygingold@gmu.edu</u>
- Project Website: https://cragl.cs.gmu.edu/pigmento/

\bullet

<u>10990-pigments-beyond-rgb.html</u>

• Artists:

Gatens, Mark Adam Webster, Patti Mollica, Jan Ironside.

• Sponsors:

United States National Science Foundation, Adobe Research.

Our exposure in I-Programmer website: https://www.i-programmer.info/news/144-graphics-and-games/

• MontMarteArt, Jan Ironside, Graham Gercken, Nel Jansen, Cathleen Rehfeld, Patty Baker, John Larriva, Pamela

Extra Slides

Performance Information

Examples	Image size	Pigments number	CPU	KM primary pigments extraction Time (sec)	KM mixing weights extraction Time (sec)	KM original image reconstruction RMSE (0-255)
soleil	600*467	6	core i7	35	155	1.9
autumn	600*458	5	xeon	16	225	6.0
four_colors_2	600*598	4	core i7	9	211	5.2
Impasto_flower2	595*600	6	xeon	44	615	5.1
Landscape4	600*479	5	xeon	26	256	4.7
Portrait2	600*441	6	xeon	29	243	4.4
tree	600*492	4	core i7	14	151	4.0

Pigment smoothness and thickness

Pigment smoothness and thickness

Pigment number influence

Wavelength influence

Wavelength influence

8 wavelength recovery

original

3 wavelength recovery

6.5 soleil

11.0 autumn

- 8.5 portrait2 6.3 landscape4 5.1 Impasto_flower4 7.3 5.2 tree
 - four_colors_2 8.1

Wavelength influence

8 wavelength recovery

original

3 wavelength recovery

autumn	11.
portrait2	8.
andscape4	6.
asto_flower	7.
tree	5.
ur_colors_2	8.

Primary pigment estimation convergence

energy Total

Primary pigment estimation convergence

Reconstruction error

Iterations

Compare to results from other models

Ours 4 pigments **RMSE: 4.0**

Tan et al. 2016 4 pigments **RMSE: 10.1**

Tan et al. 2016 6 pigments **RMSE: 4.5**

Aksoy et al. 2017 6 layers RMSE: ~0

Aksoy et al. 2017 results

Reflectance

Ground Truth Test

Absorption

Scattering

Experiments	RMSE for recovering pigments parameters H (A / S)	RMSE for recovering pigments Reflectance R	RMSE for weights recovering using recovered pigments	RMSE for weights recovering using ground truth pigments	RMSE for image recovering using recovered pigments	RMSE f image recov using ground tr pigmen
Exp1	6.2 / 1.2	0.3	29	15.2	4.8	5.9
Exp2	1.4 / 0.9	0.3	19.8	11.8	6.8	4.3
Exp3	4.5 / 0.5	0.7	63	21.4	6.7	5.9
Exp4	7.1 / 1.2	0.6	42.3	14.1	8.5	6
Exp5	1.0 / 0.7	0.3	16.6	10.4	5.8	5.2
Mean	4.0 / 0.9	0.4	34.14	14.58	6.52	5.46
Std	2.7 / 0.3	0.2	18.97	4.25	1.37	0.72

Ground truth test information

