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Related Work
• Digital palette based editing. 

• Chang et al. 2015; Tan et al. 2016; Lin et al. 2017; Zhang et al. 2017, Aksoy et al. 2017. 

Decomposing Images into Layers via RGB-space Geometry (Tan et al. 2016)



Related Work
• Kubelka-Munk model based editing. 

• Curtis et al. 1997; IMPaSTo (Baxter et al. 2004); Okumura et al. 2005;  Zhao et al. 2008; 
RealPigment (Lu et al. 2014); Abed et al. 2014; Tan et al. 2015; Aharoni-Mack et al. 2017

Pigment-Based Recoloring of Watercolor Paintings (Aharoni-Mack et al. 2017)
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Problem Statement

It is under-constrained, and there are two additional challenges!

||I� �(km(WH))||2

Input:     Image pixels’ RGB colors: I.
Output:  Primary multispectral pigments: H=[A|S]. Their per-pixel mixing weights: W.



Challenge 1: Metamerism 

Ren Ng, Spring 2016CS184/284A, Lecture 15

Metamerism
Color matching is an important illusion that is understood 
quantitatively

Brian W
andell

Ren Ng, Spring 2016CS184/284A, Lecture 15

Metamerism is a Big Effect

Brian W
andell

CS184/284A, Lecture 15 Ren Ng, Spring 2016
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Directly solving this problem is hard. 

Divide into two subproblems

1. Primary pigments extraction

2. Mixing weights extraction
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Mixing Weights Extraction
Given primary pigments, find per-pixel mixing weights.
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Compare to results from other models

Tan et al. 2016
4 pigments
RMSE: 23.4 four_colors_2

Ours
4 pigments
RMSE: 5.2

Tan et al. 2016
6 pigments
RMSE: 4.7

Aksoy et al. 2017
7 layers

RMSE: ~0

Chang et al. 2015

Tan et al. 2016
4 pigments
RMSE: 10.1 tree

Ours
4 pigments
RMSE: 4.0

Tan et al. 2016
6 pigments
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Original blue pigment -> green (ours) blue RGB -> green (Tan2016)

Original

Original

red pigment -> blue (ours) red RGB -> blue (Tan2016)

yellow pigment -> yellow (ours) yellow RGB-> yellow (Tan2016)
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Applications



Original

Original

Reduce yellow Add more yellow

Reduce red Add more red

Recoloring by modifying pigment weights



Modify weights of black/white pigment

Original

Increase the mixing weight of white pigment

Increase the mixing weight of black pigment Decrease brightness

Increase brightnessIncrease all weights 



Original Increase scattering Decrease scattering

Modify pigment scattering parameters



Rectangle Input Grabcut on KM layer Grabcut on RGB

Mask Selection



Copy-Paste in pigment space



ours

Tan2016

Chang2015

Color CC

Palette Summarization - Photos
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Edge detection and enhancement

on RGBon weights map original Enhancement
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Conclusion

• Provide an efficient optimization framework to extract multispectral pigments 
and their per-pixel mixing weights from given RGB painting image.

• Enable many paint-like edits of the painting, which are beyond RGB space.

• Our discussion of gamut problem and several regularization terms used in our 
optimization are useful in other similar problems. 
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• Using prior acyclic pigment database as initial value may cause overfitting 
problem. 

• We do not have other datasets (e.g. watercolor pigment) to verify it.

• We assume constant paint thickness to simplify optimization.

• We may want to estimate pigment layers instead of just mixtures, then layer 
order is needed. 

• Use our decomposition results to help extract brushstroke-level structure from 
painting images.
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Examples Image 
size

Pigments 
number

CPU KM  
primary 
pigments 
extraction  
Time (sec)

KM  
mixing weights 

extraction 
Time (sec)

KM  
original image 
reconstruction 
RMSE (0-255)

soleil 600*467 6 core i7 35 155 1.9

autumn 600*458 5 xeon 16 225 6.0

four_colors_2 600*598 4 core i7 9 211 5.2

Impasto_flower2 595*600 6 xeon 44 615 5.1

Landscape4 600*479 5 xeon 26 256 4.7

Portrait2 600*441 6 xeon 29 243 4.4

tree 600*492 4 core i7 14 151 4.0

Performance Information
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Compare to results from other models
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Aksoy et al. 2017 results
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Experiments RMSE for  
recovering 
pigments 

parameters  
H (A / S)

RMSE for  
recovering 
pigments  

Reflectance  
R

RMSE for  
weights recovering  

using  
recovered 
 pigments

RMSE for  
weights recovering  

using  
ground truth 

pigments

RMSE for 
image recovering  

using  
recovered  
pigments

RMSE for 
image recovering  

using  
ground truth 

pigments

Exp1 6.2 / 1.2 0.3 29 15.2 4.8 5.9
Exp2 1.4 / 0.9 0.3 19.8 11.8 6.8 4.3
Exp3 4.5 / 0.5 0.7 63 21.4 6.7 5.9
Exp4 7.1 / 1.2 0.6 42.3 14.1 8.5 6
Exp5 1.0 / 0.7 0.3 16.6 10.4 5.8 5.2
Mean 4.0 / 0.9 0.4 34.14 14.58 6.52 5.46
Std 2.7 / 0.3 0.2 18.97 4.25 1.37 0.72

Ground truth test information



Kubelka-Munk Layer Model      

RR1

T1 R2

T2

T

Layer2

Layer1 R = R1 +
T 2
1R2

1�R1R2

R is Reflectance 
T is Transmittance


